\(\int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [631]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 192 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a d \sqrt {a+b \sec (c+d x)}}+\frac {2 b E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \]

[Out]

2/3*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(
1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a/d/(a+b*sec(d*x+c))^(1/2)+2/3*sin(d*x+c)*(a+b*sec(d*x+c
))^(1/2)/d/sec(d*x+c)^(1/2)+2/3*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c)
,2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3942, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a d \sqrt {a+b \sec (c+d x)}}+\frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\sec (c+d x)}}+\frac {2 b \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[In]

Int[Sqrt[a + b*Sec[c + d*x]]/Sec[c + d*x]^(3/2),x]

[Out]

(2*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(3
*a*d*Sqrt[a + b*Sec[c + d*x]]) + (2*b*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a*d*S
qrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Se
c[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3942

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cot[e +
 f*x]*Sqrt[a + b*Csc[e + f*x]]*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1/(2*d*n), Int[(d*Csc[e + f*x])^(n + 1)*(
Simp[b - 2*a*(n + 1)*Csc[e + f*x] - b*(2*n + 3)*Csc[e + f*x]^2, x]/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {1}{3} \int \frac {b+a \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {b \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a}+\frac {\left (a^2-b^2\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a} \\ & = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2-b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {\left (\left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = \frac {2 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a d \sqrt {a+b \sec (c+d x)}}+\frac {2 b E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.63 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.81 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \sqrt {a+b \sec (c+d x)} \left (b (a+b) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+\left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+a (b+a \cos (c+d x)) \sin (c+d x)\right )}{3 a d (b+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \]

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]/Sec[c + d*x]^(3/2),x]

[Out]

(2*Sqrt[a + b*Sec[c + d*x]]*(b*(a + b)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*a)/(a + b)
] + (a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + a*(b + a*Cos[c + d*
x])*Sin[c + d*x]))/(3*a*d*(b + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1290\) vs. \(2(228)=456\).

Time = 5.28 (sec) , antiderivative size = 1291, normalized size of antiderivative = 6.72

method result size
default \(\text {Expression too large to display}\) \(1291\)

[In]

int((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d/a/((a-b)/(a+b))^(1/2)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(3/2)/(cos(d*x+c)+1)*((1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc
(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b*cos(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1
))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2*cos(d*x+c)+(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc
(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*cos(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1
))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b*cos(d*x+c)+2*(1/(a+b
)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))
^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b-2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))
^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*b^2+2*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*
x+c)+1))^(1/2)*a^2-2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c
)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b+((a-b)/(a+b))^(1/2)*a^2*cos(d*x+c)*sin(d*x+c)
+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b
)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b*sec(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipt
icE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*b^2*sec(d*x+c)
+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b
)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a^2*sec(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipt
icF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b*sec(d*x+c)
+((a-b)/(a+b))^(1/2)*a^2*sin(d*x+c)+2*((a-b)/(a+b))^(1/2)*a*b*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a*b*tan(d*x+c)+((
a-b)/(a+b))^(1/2)*b^2*tan(d*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 415, normalized size of antiderivative = 2.16 \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {6 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 i \, \sqrt {2} a^{\frac {3}{2}} b {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 i \, \sqrt {2} a^{\frac {3}{2}} b {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + \sqrt {2} {\left (-3 i \, a^{2} + 2 i \, b^{2}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (3 i \, a^{2} - 2 i \, b^{2}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )}{9 \, a^{2} d} \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/9*(6*a^2*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 3*I*sqrt(2)*a^(3/2)*b*wei
erstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^
2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) - 3*I*sqrt(2)*a^(3/2)*b*w
eierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/
a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)) + sqrt(2)*(-3*I*a^2 + 2
*I*b^2)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c
) + 3*I*a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(3*I*a^2 - 2*I*b^2)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2
)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a))/(a^2*d)

Sympy [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a + b \sec {\left (c + d x \right )}}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+b*sec(d*x+c))**(1/2)/sec(d*x+c)**(3/2),x)

[Out]

Integral(sqrt(a + b*sec(c + d*x))/sec(c + d*x)**(3/2), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {\sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((a + b/cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(3/2),x)

[Out]

int((a + b/cos(c + d*x))^(1/2)/(1/cos(c + d*x))^(3/2), x)